THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5220 Complex Analysis and its Applications 2014-2015
Suggested Solution to Test 2

1. (a) Since $e^{z} \sin z \cos 2 z$ is entire, the integral is zero.
(b) Let $f(z)=\sin z$, by Cauchy integral formula,

$$
\int_{C} \frac{\sin z}{z} d z=\int_{C} \frac{f(z)}{z} d z=2 \pi i f(0)=0
$$

(c) Let $f(z)=\frac{1}{\left(z^{2}-4\right) e^{z}}$, by Cauchy integral formula,

$$
\int_{C} \frac{1}{z^{2}\left(z^{2}-4\right) e^{z}} d z=\int_{C} \frac{f(z)}{z^{2}} d z=2 \pi i f^{\prime}(0)=\frac{\pi i}{2}
$$

2. For any $z \in \mathbb{C}$,

$$
\begin{aligned}
e^{z} & =1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots \\
e^{z}-1 & =z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots
\end{aligned}
$$

so, for any $z \neq 0$, we have

$$
\frac{e^{z}-1}{z}=1+\frac{z}{2!}+\frac{z^{2}}{3!}+\cdots
$$

Note that the series on the right hand side converges to an analytic function $f(z)$ for all $z \in \mathbb{C}$. By the construction, we know that

$$
f(z)=\left\{\begin{array}{cc}
\frac{e^{z}-1}{z} & \text { if } z \neq 0 \\
1 & \text { if } z=0
\end{array}\right.
$$

3. (a) For any $z \in \mathbb{C}$,

$$
e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots=\sum_{k=0}^{\infty} \frac{z^{k}}{k!},
$$

and for any $|z|<1$,

$$
\frac{1}{1-z}=1+z+z^{2}+z^{3}+\cdots=\sum_{k=0}^{\infty} z^{k} .
$$

Therefore, for any $|z|<1$,

$$
\begin{aligned}
\frac{e^{z}}{1-z} & =\left(\sum_{k=0}^{\infty} \frac{z^{k}}{k!}\right)\left(\sum_{k=0}^{\infty} z^{k}\right) \\
& =\sum_{k=0}^{\infty}\left(\sum_{r=0}^{k} \frac{1}{r!}\right) z^{k}
\end{aligned}
$$

(b) For any $|z|<1$,

$$
\begin{aligned}
\frac{e^{z}}{1-z} & =\sum_{k=0}^{\infty}\left(\sum_{r=0}^{k} \frac{1}{r!}\right) z^{k} \\
\frac{d}{d z} \frac{e^{z}}{1-z} & =\frac{d}{d z} \sum_{k=0}^{\infty}\left(\sum_{r=0}^{k} \frac{1}{r!}\right) z^{k} \\
\frac{(2-z) e^{z}}{(1-z)^{2}} & =\sum_{k=0}^{\infty}\left(\sum_{r=0}^{k} \frac{1}{r!}\right) k z^{k-1}
\end{aligned}
$$

4. (a) Let C be the circle $\left\{\left|z-z_{0}\right|=R\right\}$ which is positively oriented. Then, by Cauchy integral formula

$$
\begin{aligned}
f^{(n)}\left(z_{0}\right) & =\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z \\
\left|f^{(n)}\left(z_{0}\right)\right| & =\left|\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z\right| \\
& \leq \frac{n!}{2 \pi} \cdot 2 \pi R \cdot \frac{M}{R^{n+1}} \\
& =\frac{n!}{R^{n}} M
\end{aligned}
$$

(b) Since f is bounded, there exists $M>0$ such that $|f(z)| \leq M$ for all $z \in \mathbb{C}$.

Let $z_{0} \in \mathbb{C}$. Since f is an entire function, f is analytic in $\left\{\left|z-z_{0}\right| \leq R\right\}$ for all $R>0$. By using (a), we know that $\left|f^{\prime}\left(z_{0}\right)\right| \leq \frac{M}{R}$. Let R goes to infinity, we can show that $f^{\prime}\left(z_{0}\right)=0$. $f^{\prime}(z)=0$ for all $z \in \mathbb{C}$ implies that f is a constant function.
(c) Let P be the closed parallelogram spanned by ω_{0} and ω_{1}. The parallelogram P lies inside the interior of the disk $D=\{|z| \leq R\}$. By using the maximum principle, there exists $z_{M} \in \partial D=\{|z|=R\}$ such that $\left|f\left(z_{M}\right)\right| \geq|f(z)|$ for all $z \in D$. In particular, $\left|f\left(z_{M}\right)\right| \geq|f(z)|$ for all $z \in P$, i.e. f is bounded in P.
Let $z \in \mathbb{C}$, there exists $z^{\prime} \in P$ such that $f(z)=f\left(z^{\prime}\right)$. Therefore, $|f(z)|=\left|f\left(z^{\prime}\right)\right| \leq\left|f\left(z_{M}\right)\right|$ for all $z \in \mathbb{C}$, i.e. f is bounded on the whole complex plane. By using (b), f is a constant function.

